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ABSTPACT 

The behavior of the longitudinal impedance of the 
SSC shielded bellow at low frequencies depends very 
much on the length of the rake field used in the 
Fourier transformation. We show analytically and 
numerically that, regardless of the difference, single- 
bunch effects are independent of the actual shape of 
the impedance when the length of the wake used is 
bigger than the bunch length. 

INTRODUCTION 

The SSC bellows are shielded as in Fig. 1 in order 
to reduce impedances. Both the longitudinal and trans- 
verse impedances of such a system have been computed'12 
and are reviewed in the Conceptual Design Report3. In 
particular, the real part of the longitudinal impedance 
is shown in Fig. 2a. We see that, at low frequencies, 
the impedance is 6.67 0. This can be understood by the 
fact that electromagnetic eaergy is leaking through the 
gap, which can be viewed as a coaxial transmission line 
of inner and outer radii 1.7 and 1.8 cm connected in 
parallel to t beam pipe. Thus, the impedance is just 
z, = (Z,/2T) (1.9/1.7) = 6.67 D, the characteristic 
impedance of the transmission line, Z, = 377 n being 
the free-space impedance. At the Snowmass Workshop, it 
was pointed out that such an impedance plot cannot be 
correct since the feeding of energy into the shielded 
part of the bellow system cannot continue far ever. 
When equilibrium is reached, flow of energy is no long- 
er possible. In other words, the longitudinal impedan- 
ce at lox frequencies should be sew instead. It is 
the purpose of this paper to investigate this problem. 
Our result shows that the latter picture is indeed 
correct. Bowever, for the purpose of studying single- 
bunch properties such as instabilities and parasitic 
losses, the impedance plot of Fig. 2 will lead to the 
correct results and is simpler also. 

TUB YONOPOLB MODE 

We compute the longitudinal rake field of the 
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Fig. 1. The shielded bellow. p = 30 cm, g = 10 cm, 
b = 1.5 cm, d = 9 mm, t= d = 2 mm. 

*Operated by the Universities Research Association, 
under contract with the U.S. Department of energy. 

:I i / L-0 I illI 

v 
.m.% 

*‘ema 
f-j! ~ ,I, ~ 

0 2 . . * I* II I. ,‘ ,, m II 

FrePEK” TN mat 

(a) 

T 

.-.a 
0 1 . . . 10 II I. I. I. m sz 

FGTOEK” IN me 

Fig. 2. (a) real and (b) imaginary parts of ZL computed 
from only 30 cm of the wake potential in Fig. 3. 

configuration in Fig. 1 up to B length of 4.096 m with 
a mesh size of 0.5 mm. The result is shown in Fig. 3. 
The real and imaginary parts of the Fourier transform 
give the longitudinal impedance and are displayed in 
Fig. 4. We see that the structure of the impedance is 
totally different from that in Fig. 1 where only 30 cm 
of the wake is used. In Fig. 4, we do not see 6.67 0 
at low frequencies indicating the fact that energy is 
not being fed into the shielded cavity indefinitely. 
The exact value at zero frequency is not known; its 
determination requires the wake up to infinity. We see 
many sharp resonances at nearly every half Me which 
correspond to rave bouncing back and forth in the 30 cm 
overlapping region of the sliding shields. In fact, 
such reflection for roughly every 60 cm can be seen in 
the rake potential in Fig. 3. The reason for the 
appearance of the first reson2.nce at near zero 



frequency is unknown 
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Fig. 3. Longitudinal wake potential of shielded bellow. 

LUSITLOIIII IIPtCLZE IFSFCI 

We know that many physical phenomena such as 
single-bunch-made instabilities and parasitic energy 

loss depend only on the low-frequency part of the impe- 
dance where the amplitude of the bunch spectrum is not 
too small. Bowever, the low-frequency parts of Figs. 2 
and 4 are so much different; how can they produce the 
same result? The answer lies in the fact that the SSC 
bunch has an FM length of only (I = 7 cm. The interac- 
tions between the particles inside the bunch only 
depend on -30 cm of the rake potential. So both 
Figs. 2 and 4 should lead to the same single-bunch 
effects. Physically speaking, the bunch, because of 
its short length, will not be able to see the wave it 
sends out to bounce back from the overlapping region of 
the sliding shields. In other words, for single-bunch 
effects, the structure in Fig. 1 can be simplified by 
closing the end A of the overlapped shields. 

To demonstrate the equivalence of Figs. 2 and 4 
for single-bunch effects, let us compute the rate of 
parasitic loss of an SSC bunch passing through a 
shielded bellow structure. This rate of loss is given 
by 

$ = c J:is ,“. de'p(e)p(z')W,(z-e'), (1) 

rhere c is the velocity of light, WL the longitudinal 
rake potential and 

p(z) = &exp[-z2/2021 (2) 

is the linear bunch density carrying a total charge of 
eN. The upper integration limit of z' in Eq. (1) can 
be extended from z to +- because of the causality 
property of WL. !d"t, in reality, because of Eq. (2), 
the integration ranges of both z and z' are only appro- 
ximately from -20 to *20. As a result, only about 40 
or a length equal to the approximate length of the 
bunch is needed for the wake. 

In the frequency domain, we can write 

p(z) = Zp expi-jWoz/cl, 
P p 

(3) 

(4) 

with 

w. the angular revolution frequency of the accelerator 
ring, and ZL is the longitudinal impedance. In Bqs. 3 
and 4, the summations are for all integers p from -0) to 
+-_ Then, the rate of parasitic loss becomes 

(6) 

Because the circumference of the SSC ring is so much 
bigger than the bunch length, the summation over p can 
be transformed into an integral; or 

(7) 
(b) 

Fig. 4. (a) real and (b) imaginary parts of ZL computed 
with ~4.1 m of wake potential in Fig. 3. where the integral Ln is defined as 
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L" = & j+~u,2r)"ZL(~)exp[-(oo/c)~]du, 
.DD 

which is independent of the size of the ring. We rant 
to examine this general integral because it will appear 
in various single-bunch effects; for example, frequency 
shifts and growth rates of various single-bunch mode 
oscillations. This integral will result when differen- 
tiation of order n is performed on the rake potential 
in Fig. 1. As a result, this integral should also be 
independent of the length of the rake from which ZL is 
derived as long as the length is larger than the bunch 
length. Note that only the real (imaginary) part of ZL 
will contribute if " is eve" (odd). This integral is 
computed xith the Zl, of Fig. 2 and also that of Fig. 4; 
the results are listed in Table I. 

Lo WI”*) B.06B 8.067 8.07 

Ll W"S2) j0.566 jO.566 j0.59 

L2 W"S3) 1.877 1.879 1.86 

L3 w"*4) jO.3SS j0.396 j0.41 

L4 w/"*5) 1.315 1.313 1.31 

L5 w"*6l jO.460 j0.461 jO.46 

Table I 

Table I obviously demonstrates that the integral 
L" is indeed independent of whether Fig. 2 or Fig. 4 is 
used for the impedance. I" fact, Fig. 2 is a lot sim- 
pler because at low frequencies over the spectral range 
of the bunch, Re(ZL) and Im(ZL/w) are almost constant 
and can be derived. As is show" above, at lou frequen- 
cies, 

h(ZL) = &“2 ^I 2 
1 1 

is the characteristic impedance of the transmission 
line formed by the overlapping shields of inner and 
outer radii r-1 and x-2 respectively and gap size A = 
r2-rl. The cavity to the right of the overlapping 
shields CB" also be considered4 as a transmission line 
connected in series with the beam pipe of radius r" 
(= 1.5 cm). At low frequencies, the impedance is 

z.5 $..a z g A’ 
I-&=? * j* , 

0 0 
where A' = 
line 

'2-r" and g, is the effective attenuated 
length (since propagation is impossible below 

cutoff) relating to the actual length g (= 10 cm) by 

with 7 = 2.405/r2. We get Im(ZL/w) = 0.374 fl-"s in 
agreement with the initial slope of 0.329 C-as in 
Fig. 2b. The", the integral Ln can be performed analy- 
tically by taking the impedance outside the integration 
sign, giving 

where the impedance is give" approximately by Eqs. (9) 
and (IO). The evaluation of Eq. (12) is listed in the 
last column of Table I for comparison. The advantage 
of using a short rake or the impedance shown in Fig. 2 
is obvious. Ewe, Eq. (12) can tell us how the parasi- 
tic loss as well as other quantities of interest are 
dependent on the various parameters of the shielded 
bellow system. For example, the parasitic loss is 
approximately proportional to the gap A of the sliding 
shields when A << rl. On the other hand, the more 
exact impedance in Fig. 4 tells us nothing. I" our 
situation, far Y = 17280 bunches each containing N = 
7.3X10g protons and -5OCO such shielded bellow systems, 
the rate of parasitic loss is ~3500 watts. In the 
Conceptual Design Report4, they take '1 = 1.65 cm and 
find that, in order to reduce this loss to a" accepta- 
ble one of -190 watts, the sliding gap A cannot exceed 
0.1 mm. Our formula agrees with such a conclusion, 
although a sliding gap of such small size is "ot prac- 
tical in reality. An easier solution is to place fin- 
gers closely along the circumference of the gap so that 
no radiation of low frequencies can penetrate. 

DIPOLE MODE 

We now consider the transverse mode. The trans- 
verse wake WT (Fig. 5) is computed up to a length of 
2.6 m. A longer rake is impossible because TBCI starts 
to diverge after such length in the dipole mode. The 
transverse impedance ZT is defined by 

WTC*l = -j~~ZT(PYO)exp[jpwoz/cll (13) 
P 

and is plotted in Fig. 6 computed using only 30 cm of 
wake and Fig. 7 osing the whole wake available. Unlike 
the longitudinal case, here the plots are similar 
although the resolution is much higher in Fig. 7. 

We CB" also compute a similar integral T" far the 
transverse mode: 

Tn = 2 / 
-0) 

(w/Zn)"Z,(u).~pI-(ua/~)'~d". 
-0 

(14) 

Bere, only the imaginary (real part) of ZT will contri- 
bute when n is eve" (odd). The numerical results are 
listed in Table II. 

- - 
-- 

10DIm..,., 

-. LOW 

1 

tin = 1 2~1.[~][&,"+~~[~] 
IIZ) 

n odd Fig. 5. Transverse rake potential of shielded bellow. 
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Fig. 6. (a) real and (b) imaginary parts of ZT computed 
from only 30 cm of wake potential in Fig. 5. 

w w 

T, (n/m-ns) jO.l69E+4 jO.l68E+4 

Tl (fljm-ns2) -0.23lE+O -0.630E*O 

T2 (n/m-ns3) j0.393E+3 j0.39QE*3 

T3 (II/m-ns4) -O.lllE+Z -0.4883*2 

Tq (n/m-ns5) jO.Z88E+3 j0.285E+3 

TV (n/m-ns6) -0.604Etl -0.53OE+l 

Table II 

We see that, when n is even, T, is independent of 
the length of rake used so long if it is longer than 
the length of the bunch. Bowever, when n is odd, the 
values of T, differ. If we use a slightly longer rake, 

~ -.“x 
mm-..,., 

I -.con” 

i. 

I 

1 

. ID II I. Y I. 1D a 

FGfmxK” IN w 

@I 

- 

Fig. 7. (a) real and (b) imaginary parts of ZT computed 
from the 2.6 m of the wake potential in Fig. 5. 

for example, 40 cm, good agreement is obtained. As 
given by Eq. (14), T, should be positive when n is odd 
since Re[ZT(w)] cannot be negative for positive fre- 
quency Y. On the other hand at low frequencies Re[ZT] 
is identically zero so that T, should be very small for 
odd n. Cur results ace small but unfortunately nega- 
tive. This may be due to the inaccuracy of TBCI in 
computing the wake field. Since Im[ZT] is constant at 
low frequencies, a formula similar to Eq. (12) can be 
derived for T, when n is even. 
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